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AFIT/GSE/ENV/09-M04 

Abstract 

Current Air Force operations are undergoing significant changes necessitated by 

increasing fiscal constraints, increasing aircraft age, and recent drawdown in personnel to 

perform maintenance, repair, and other necessary functions.  In order to deal with these 

challenges, the Air Force must effectively improve current operations.  This paper 

explores potential structural health monitoring (SHM) solutions to some of the challenges 

facing aircraft maintenance and repair operations.  As with any problem, a variety of 

solutions exist and this paper explores the potential solutions and limitations of various 

options.  Aircraft SHM is an intriguing concept with potential capability to revolutionize 

current Air Force maintenance operations.  However, this capability needs to be balanced 

with the total life cycle cost associated with training personnel, and with developing, 

integrating, maintaining, and disposing of the SHM system.  This thesis develops and 

implements a value-focused thinking model as a decision-making tool to analyze several 

potential solutions to SHM problems. 
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ASSESSING STRUCTURAL HEALTH MONITORING ALTERNATIVES 

UTILIZING A VALUE FOCUSED THINKING MODEL 

 
 
 

I. Introduction 
 
 

1.1 Problem Statement and Objective 

The United States Air Force needs to reduce Operations and Maintenance (O&M) 

costs by improving the efficiency of current maintenance operations.  Implementing a 

Condition-Based Maintenance (CBM) concept may dramatically decrease maintenance 

costs and aircraft downtimes while maintaining or improving fleet safety.  Enabling 

technologies, such as an Integrated Structural Health Monitoring System (ISHMS), must 

be developed to make the CBM model a reality.  Structural Health Monitoring (SHM) is 

a key aspect of the CBM & ISHMS constructs as it increases the users’ awareness of the 

aircraft structural integrity.  Maintenance and logistic planners can make better use of 

limited resources by better understanding the current structural state of the aircraft.  This 

thesis explores several options for implementing SHM and presents a value model to 

determine what measures offer the greatest opportunity and “bang for the buck” toward 

achieving CBM operations. 
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1.2 Research Approach and Methods 

     1.2.0  Introduction. 

Generally speaking, the authors took a broad, holistic, systems approach to determine 

how an ISHMS could be implemented.  This section details (in nearly chronological 

order) the research methods used to come up with the notional value model presented in 

Chapter 5, as well as the conclusions outlined in Chapter 6.  

     1.2.1  Literature Review. 

          1.2.1.1. Articles and Presentations. 

The research and discovery journey traversed throughout this study began with a 

review of numerous articles and presentations on CBM and SHM.   The list of references 

(pg 82) included herein is only a fraction of the material that was combed through to 

learn about the genesis and evolution of these topics and to gain a deeper understanding 

of the benefits and challenges they present.  Much has been written and published on both 

concepts over the last 15-20 years that can be easily found via open-source media.   

 Fairly early in the study, the authors attended the ISHM Symposium to learn more 

about the latest research and development in health monitoring technologies.  Sponsored 

by the AFRL’s Air Vehicle Directorate, this forum revealed the wide range of application 

of system health monitoring concepts and technologies.  From the automotive and 

aerospace industries to civil engineering, presenters demonstrated how health monitoring 

is being used across disciplines and domains to cut costs and improve customer service 
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and safety.  This forum reinforced the authors’ impression that a wealth of research is 

being done in this area, making it quite difficult to narrow the team’s focus for this 

project. 

A bit later, fortunately, Dr. Jim Blackshire, a researcher at the Air Force Research 

Lab’s (AFRL) Materials Directorate, shared a cache of literature on sensor technologies 

being evaluated for SHM application.  The repository of articles, book chapters, and 

presentations he disclosed helped piece together a clearer picture of the current state of 

SHM technologies.  Dr. Blackshire’s mini-library covered results of several recent sensor 

tests and his own soon-to-be-published comparative analysis.  Much of the discussion 

presented in Chapter 4 is based on the information he so graciously provided.  

          1.2.1.2  Previous Thesis. 

In addition to a thorough survey of open source literature, theses written by former 

AFIT students were studied and revealed a surprisingly narrow focus on sensor 

technology as the preferred solution to accomplishing SHM.  In their 2006 work, Albert 

et al., suggested a SHM system “could consist of a set of sensors installed on the 

components or the aircraft structure” [1:26].  In 2007, Bond et al. said, “An important 

part of an ISHM solution is the sensor selection, and from the various technologies 

currently available the group was guided towards methods using Lamb waves.  The 

specific technology that the group was guided to use was the Monitoring and Evaluation 

Technology Integration System (METIS) sensor” [3:4].  In addition to these two studies, 

Underwood emphasizes that “an embedded SHM system installed at the bulkhead 
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location of the known fatigue cracks would prevent the lengthy inspection times, 

increasing the readiness of the aircraft and reporting the structural health of the aircraft” 

[5:1].   Each of the aforementioned theses is summarized for background purposes in 

Chapter 2. 

     1.2.2  Broad, Holistic Systems Perspective. 

The authors of this thesis discussed the previous focus on sensors and known 

associated challenges with implementing a system that relies almost exclusively on this 

technology.  During this discussion the question of “What other technologies or processes 

can/could be used to gain insight into the structural state of the aircraft?” was raised.  In 

other words, if sensors are too costly and difficult to implement on the legacy fleet, what 

other options are available now—or could be available in a relatively short period of 

time—that would help maintenance personnel and engineers ensure the structural 

integrity of the aircraft. 

By taking a broader, holistic perspective to achieving an enhanced SHM capability, 

the authors were able to come up with a wide range of promising alternatives in addition 

to, or perhaps even in lieu of, sensors.  Options from various levels of technical 

complexity emerged.  For example, the flight data that is already being collected, such as 

the information captured on the flight data recorder (also commonly referred to as  “the 

black box”), could be merged with accurate, detailed maintenance records and post-flight 

debrief and operational environment reports.  This multi-sourced, fused data set could 

then be fed into tail-number specific diagnostic and prognostic models that ideally would 
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be robust enough to be trusted and relied upon for predicting when a critical failure will 

occur.  This Information Management and Modeling (IM&M) concept would allow 

continued operation until the model(s) determines unscheduled maintenance on a 

particular tail-number is necessary to prevent unacceptable damage, in essence fully 

enabling a CBM concept.   

At the other end of the technical complexity spectrum is an improved training 

program incorporated into current maintenance operations.  Essentially SHM would be 

accomplished in the same manner it currently is but would be streamlined and carried out 

by technicians who are fully aware of the ramifications of improper maintenance 

actions—ramifications that include costs and downtime metrics related to scrap and 

rework due to personnel-induced damage.  This effort would simply place a renewed 

emphasis on best practices for avoiding damage induced during routine maintenance and 

inspection teardown.  Obviously, this option is less sophisticated and as such less 

expensive than the IM&M alternative but would likely produce far less dramatic cost 

savings and asset availability benefits not to mention its failure to meet the tenets of 

CBM.  

In Dr. Carl’s first lesson of AFIT’s Introduction to Systems Engineering Processes 

and Design course he presented systems engineering as  

“… an interdisciplinary approach encompassing all … efforts 
needed to evolve, verify, deploy (or field), and support an 
integrated and life-cycle balanced set of … solutions that satisfy 
customer needs” [30]. 
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In concert with this and other similar definitions, and as budding systems engineers, the 

authors quickly surmised that the optimal solution likely involves a system that 

integrates, in part or in whole, all the proposed alternatives (and perhaps even others yet 

to be considered.)  

     1.2.3  Interviews with Stakeholders. 

To ensure this new integrated approach is feasible and acceptable to real-world 

stakeholders, the authors visited with Aircraft Structural Integrity Program (ASIP) 

managers and other engineers at the Warner-Robins Air Logistics Center at Robins Air 

Force Base, GA.  Their feedback reinforced the hypothesis that an ISHMS does not 

necessarily have to be based on a sensor technology solution, especially when faced with 

the unique challenges of installing a suite of sensors on the legacy fleet.  As a matter of 

fact, one High-Velocity Maintenance engineer expressed his hope that a laptop-based 

IM&M concept would someday be implemented across the fleet.  This capability has 

already been demonstrated on a limited scale by researchers at the Mercer Engineering 

and Research Center (MERC) near Robins, GA.  Ideally, detailed records of tail-number 

specific maintenance actions, the operational environment, pilot post-flight debriefs, 

black box data, etc. would be entered and stored on a single laptop computer that stays 

with each individual aircraft as it flies to various locations in and out of the theater(s) of 

operation.  All this data would be collated to refine the finite element analysis model of 

the aircraft structure, as well as diagnostic and prognostic models of other subsystems 

and components.  The models would be automatically updated as new information is 

input and then maintained on that same laptop so that personnel at any given destination 
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can easily access relevant analysis and records for the aircraft of interest, thereby 

radically streamlining the current data collection, analysis, and modeling process.   

In addition to gaining confidence in the theory that an ISHMS ultimately will need to 

be an integrated system that may or may not include sensors, the authors also gained a 

richer appreciation for how labor-intensive and time-consuming some of the current 

usage-based inspections are.  After touring the C-130 depot maintenance facility and 

seeing first-hand some of the problem areas that are driving up O&M costs and aircraft 

downtimes, the team is convinced that current SHM operations is incredibly inefficient.  

Indeed, a better way of accomplishing this desperately needed capability must be 

developed and employed.  More on the need for more efficient SHM operations is 

presented later in Chapter 3, and a specific C-130 trouble spot example is detailed in 

Chapter 5.  

Finally, while in the area, the authors took advantage of the opportunity to observe an 

ongoing sensor comparison test at the Mercer Engineering Research Center (MERC).  

This highlighted how extensive the interest in and research into a sensor-based SHM 

capability currently is.  In fact, the observed test set up was being used for three separate 

research entities—one commercial company, one government laboratory, and the MERC 

itself—all conducting studies related to SHM sensor technologies.   

     1.2.4  VFT and Value Modeling. 

The research team soon realized that choosing the best SHM alternative for a given 

area was highly dependent on the scenario in question.  In particular, the best/right mix 
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depends on the time required to tear-down for a given inspection location and how often 

the area needs to be inspected.  

Therefore, the authors then met with Dr. Jeffrey Weir, an associate professor at AFIT 

who teaches decision analysis (DA) courses in the Operations Research department.  Dr. 

Weir passed on his expertise on the latest tools and techniques being used in the growing 

field of DA.  Dr. Weir was generous enough to share with the authors a model-building 

tool that he developed based on value-focused thinking (VFT) principles.  The value 

model described herein enables systems engineers to take a holistic, integrated approach 

to ISHMS implementation by revealing which alternative(s) most satisfies the customers’ 

needs based on what the stakeholders identify as being “valuable” in an ISHMS.  More 

details about VFT and the value model built for this study are presented later in Chapter 

5.   

     1.2.5  More Interviews with Stakeholders. 

Once the value model was built, the authors again sought feedback from key 

stakeholders.  The model was demonstrated to ASIP Managers, engineers, and equipment 

specialists at Ogden Air Logistics Center at Hill Air Force Base, UT.  Their input on 

factors that they value in an ISHMS and the appropriate weighting of those factors were 

incorporated into the model.  

Perhaps more important than the model feedback obtained from the folks at Ogden is 

the enlightening insight on the political environment they conveyed.  In particular, they 

described the sensitivity surrounding the Service Life Extension Program (SLEP) and 



 

9 

 

related topics.  In some legacy platform communities, assessments of the 

feasibility/possibility of stretching out the SLEP for aircraft set for retirement has become 

a very unpopular and taboo topic of discussion.  Such evaluations could produce results 

that may undercut the rationale for recapitalization of the fleet.  And because SHM of 

legacy aircraft and any enabling technologies such as the proposed ISHMS are viewed as 

measures that provide greater long-term cost saving benefits, proponents of 

recapitalization fear that investing in these technologies may send the wrong signal to 

senior leaders and Congressional staffers. 

     1.2.6  Intelligent Maintenance Systems Center Annual Board Meeting. 

The Intelligent Maintenance Systems (IMS) Center held its annual board meeting in 

Dec 2008 and invited the authors to attend.  The IMS Center is a consortium of academic 

institutions and industry partners interested in, as the name implies, maintaining systems 

wisely.  This notion echoes the Air Force Smart Operations for the 21st Century 

(AFSO21) mantra:  “work smarter—not harder.”  During the annual meeting, student 

researchers and industry experts present new models for optimizing operation and 

maintenance systems used across a wide range of business domains.  International 

representatives from the manufacturing and production industry as well as dynamic 

operating systems, like a European high-speed railway system, demonstrated how they 

are taking advantage of cutting edge technologies and robust modeling techniques to 

operate more efficiently—cutting costs, boosting productivity, and improving customer 

service.   
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The most surprising and alarming take-away from this diverse forum was the lack of 

US government representation.  Despite being hosted in Cincinnati, Ohio, representatives 

from foreign companies along with international exchange students participating in the 

IMS Center’s intern program comprised roughly half of the attendees.  Almost no one 

representing the US government (with exception of one other Air Force person and the 

authors of this study) attended this eye-opening conference.   

1.3  Outline of Thesis Content 

The remainder of this thesis first introduces some background on the SHM studies 

conducted to date by other systems engineering students at AFIT in Chapter 2.  This 

background lays the foundation for the capability needs analysis presented in Chapter 3.  

Then, the current state of certain relevant technologies and processes that could be 

employed to better satisfy the capability need is discussed in Chapter 4.  Next, a notional 

value model that assesses how well these alternatives meet stakeholder needs is described 

in detail in Chapter 5.  And finally, the authors’ conclusions and recommendations based 

on the research conducted throughout the study are presented in Chapter 6. 

 
  



 

11 

 

II. Background 

 

2.1  History of SHM 

Aircraft structural health monitoring has been around since the advent of flight.  In its 

infancy, structural health monitoring was performed by visual inspection of various 

aircraft parts.  Maintenance personnel would inspect parts for damage and replace them if 

the damage was perceived to be significant enough to pose a threat to the aircraft.  This 

visual only inspection method quickly became a limiting factor as aircraft design 

advanced and structural material changed to various metals.  These changes necessitated 

advances in inspection technology in order to inspect aircraft parts and determine if flaws 

existed at levels beyond which the human eye could detect.  Non-destructive inspection 

(NDI) instruments and techniques began to emerge which provided a capability for 

engineers and maintenance personnel to assess the aircraft structural state.  Many of the 

NDI techniques (eddy current, ultra sonic, x-ray, etc...) developed over the past decades 

are still utilized today to inspect aircraft structures. 

The current inspection techniques have proved to be reasonably reliable and accurate; 

however, they are extremely labor intensive and require a highly trained operator to 

perform the inspection.  The escalating costs associated with manual inspections have 

forced the aircraft community to develop alternative methods of inspection that are more 

cost effective.  It is this recent shift in focus that has led to a vast increase in the research 

and development of alternative SHM methods.  As of today, extensive research and 
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development efforts are being performed to develop sensors, prognostic models, and 

various other approaches to more cost effectively address structural health monitoring 

concerns.   

2.2  Previous Thesis 

     2.2.1  March 2006 Thesis Summary. 

In 2006, a group of AFIT Systems Engineering students responded to a request by the 

Office of the Undersecretary of the Air Force for International Affairs (SAF/IA) to 

“develop a systems engineering (SE) approach for an Integrated Structural Health 

Monitoring system (ISHMS) for Coalition Air Force aging aircraft.”  Their research and 

analysis produced a “generic SE process to describe the system definition for an ISHMS 

installed on a non-specific aging aircraft.”  The scope of the system definition was 

limited to the system level definition of the ISHMS design problem and the functional 

system architecture and stopped short of addressing physical architecture and system 

design, which would be highly platform-dependent. The study also used mathematical 

simulations to compare the failure rate and number of inspections required for scenarios 

with an ISHMS vs. without an ISHMS.  The simulations revealed promising flight safety 

and maintenance cost benefits.  [1] 

     The students also drafted user requirements based on two key assumptions: 

1. A cost-benefit analysis would demonstrate that an ISHMS 
could reduce maintenance costs enough to warrant investing in 
the development, design, and fielding of the system. 
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2. An ISHMS would be used primarily to detect structural 
damage by monitoring crack growth. 

This thesis addresses the latter of these assumptions.  Chapter 5 details a value model 

based on input from subject matter experts within the user community, illustrating how 

users would/should in fact employ an ISHMS for a number of specified structural 

locations.   

     2.2.2  March 2007 Thesis Summary. 

Two thesis projects were completed in 2007 on the topic of ISHM.  Captain Jeffrey 

Crider’s work [2] examined the ability to detect simulated cracks in a representative 

aircraft structure using piezoelectric transducers.  A second thesis completed by Matthew 

Bond, Captain James Rodriguez, and 1Lt Hieu Nguyen [3] expanded on a previous ISHM 

thesis by attempting to apply systems engineering principles to develop an ISHM system 

for any generic aircraft.    

Captain Jeffrey Crider completed a thesis in 2007 in which he examined the use of 

Lamb waves to detect cracks in both aluminum flat plates and a simulated F-15 bulkhead.  

Captain Crider's work was based on the theory that crack detection is possible by exciting 

a material with electromagnetic energy (Lamb wave) and measuring the response of the 

material.  The experiments were performed with piezoelectric sensors.  The sensors 

examined were the M.E.T.I Disc 3 sensor and an American Piezo Ceramics (APC) 850 

piezoelectric transducer. 
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The first tests performed examined the M.E.T.I Disk 3 sensor on a small (608 mm x 

102 mm x 1.6mm) undamaged aluminum plate.  This experiment served as a baseline for 

proving the ability to generate and measure signals and compare those signals to the 

theoretical predictions.  Results from this experiment proved the concept, but were 

inconclusive due to the limited geometry of the test specimen.  Due to the size of the test 

article, there were difficulties measuring the reflected wave from the edge boundary 

conditions and the original wave being propagated.   The same test was then performed 

on a larger (1220 mm x 610 mm x 1 mm) flat-plate aluminum test article.  The results 

from the second test proved the ability to produce, measure, and compare experimental 

results to theoretical predictions.  This same series of tests was conducted using the APC 

piezoelectric transducers and also proved the ability to generate, measure, and compare 

experimental results to theoretical predictions.  

Once the methodology was established for collecting data, Crider collected data from 

a realistic aircraft part.  He selected an F-15 bulkhead since it was a part that had a known 

cracking problem in operation.  Crider could not use an actual aircraft bulkhead so he had 

a replica made from aluminum.  The test article was made with three EDM notches cut 

into the material to simulate the cracking observed in the operational specimen.  The 

actual bulkhead is made of titanium, but aluminum was chosen as a suitable substitute for 

purposes of the experiment.  Testing on the simulated bulkhead could only be conducted 

using the APC piezoelectric transducers because the M.E.T.I sensors would not fit in the 

area of the simulated crack due to their size.  The M.E.T.I sensor also had the limitation 

of only being able to operate in a pulse-echo mode. 
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Crider's results showed the ability to detect the EDM "cracks" in the bulkhead test 

article with a reasonable amount of repeatability using the piezoelectric transducers in a 

pitch-catch mode.  These results show promise for the ability to detect cracks in aircraft 

structures, but are yielded from a very controlled laboratory environment. 

Matthew Bond, Captain James Rodriguez, and 1Lt Hieu Nguyen conducted research 

which expanded upon previous AFIT ISHM thesis work completed in 2006.  They 

applied systems engineering principles to analyze an ISHM system and its applicability to 

the F-15 bulkhead crack problem which was explored by Captain Jeffrey Crider. 

Bond et al. began by creating architecture products (OV-1 and OV-5) which 

examined the operational need and then completed a functional decomposition.  The 

main focus of this effort was to explore the requirements definition and how those 

requirements were used to design, install, and operate an ISHM system.  Once the 

requirements definition and analysis was completed, the group performed experiments 

using the M.E.T.I. Disc 3 sensor.  The experiments performed were similar to those 

conducted by Captain Crider, but with a different sized flat plate (21" x 42" x 1/4") and 

different frequency for wave generation.  The group used wooden blocks placed on the 

aluminum plate to simulate damage.  Tests conducted using the M.E.T.I. sensor and large 

aluminum plate produced very poor results.  The group was not able to get repeatable 

results and theorized the reason was due to several factors including the dimensions of 

the aluminum plate, capability limitations of the transducer, and data processing methods 

and algorithms.  They determined that they were not able to discern their wave signal 

from the background noise and hence could not make any conclusion from their 



 

16 

 

experiments.  The group decided at this point to cease testing with their current 

configuration and pursue testing with the second-generation M.E.T.I. sensor. When the 

group resumed testing with the second-generation sensor, results were still very 

inconsistent.  The team was able to detect flaws in the material less than 50% of the time 

and with extremely limited repeatability.  The results were very sensitive to the test 

configuration and material damage. 

Bond et al. concluded that there is a possibility for sensors to detect damage to 

aircraft structures, but real-world factors such as background noise, complex structural 

geometry, and other environmental factors will make the technology challenging.   

2.2.3  March 2008 Thesis Summaries. 

Captain Jason Brown and 1Lt Travis Hanson completed a thesis [4] analyzing ISHM 

requirements and implementation.  The thesis approaches the topic from a system 

engineering perspective to show the need for the Integrated Structural Health Monitoring 

System and discusses the technical feasibility of ISHMS.  Cost benefit analysis, a 

comparison of true cost savings based on the current inspection methodology, and the 

development of the data processing requirements are included.  The Joint Capabilities 

Integration and Development System (JCIDS) was explained, and an implementation of a 

JCIDS process to refine the requirements of ISHM was accomplished.  A detailed review 

of the national documents was completed to identify the required capabilities and the 

capability gaps were accomplished along with the Functional Area Analysis (FAA), 

Functional Needs Analysis (FNA), and Functional Solutions Analysis (FSA).  “This 
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thesis attempts to show the need for an Integrated Structural Health Monitoring System, 

identifying how it may be implemented and the expected cost savings using a Systems 

Engineering (SE) approach.” After providing some brief information about various types 

of sensor systems, the thesis details how an ISHM system could notionally be 

implemented.  They analyze sensor cost estimates from design through disposal and 

provide comparisons between the various sensor solutions.  The thesis also includes a 

needs analysis for ISHM system implementation. For example, “Any system must also be 

rigorously analyzed and tested to ensure that no negative side-effects occur, such as 

electric or magnetic interference of other systems and any chemicals” and current 

military standards must be met to ensure compatibility and interoperability.  The thesis 

ends recommending studies on verification of cost savings from increased availability, 

determination of sensor accuracy, refinement of ISHM implementation costs and 

determination of optimal inspection intervals. 

Captain Roman Underwood completed a thesis on specific technical issues regarding 

SHM and potential sensor applications [5].  He stated, “If we can know when an aircraft 

needs to be serviced- a.k.a. condition based maintenance- as opposed to servicing at a 

fixed interval, we could increase aircraft readiness while decreasing sustainment costs. 

An embedded SHM system installed at the bulkhead locations of the known fatigue 

cracks would prevent the lengthy inspection times, increasing the readiness of the aircraft 

and reporting the structural health of the aircraft.” [5:1]. 

A goal of Structural Health Monitoring is to increase aircraft readiness through 

condition based maintenance (i.e., servicing an aircraft only when it is known to be 
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necessary). The Piezoelectric Lead Ziconate Titanate (PZT) is a commonly used sensor 

that has shown potential to detect damage in aircraft structures without time consuming 

manual inspections. However, many locations identified by the USAF for SHM have 

restricted geometries, presenting difficulties using the PZT sensors. One known fatigue 

location in an aircraft bulkhead has been selected as a basis to evaluate some of the 

challenges of using PZT sensors for SHM. The United States Air Force (USAF) has 

aircraft with bulkheads known to suffer fatigue cracks. The goal of this research was to 

use analytical and experimental investigations to detect fatigue cracks in plates 

representing the restricted geometry of the aircraft bulkhead.  To accomplish this task, 

Lamb wave characterization was done on a large flat plate made of 6061-T6 aluminum. 

Then, test plates cut from the same sheet of aluminum as the large flat plate are cyclically 

loaded to propagate fatigue cracks in them. 

This thesis research showed the benefit of PZT sensors could be their ability to 

monitor a known crack as it grows, instead of trying to detect new cracks which may be 

emerging.  The potential of detecting damage with PZT sensors and Lamb waves exists, 

but more research is required. 
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III. Requirements Analysis and Traceability 

 

3.1  Capability Need 

Why does the USAF need an ISHM system?  The USAF is facing some serious 

challenges with respect to the health of their fleet of aircraft.  Currently almost 1/3 of the 

aircraft fleet is over 30 years old with many aircraft such as the B-52 and C-130 over 50 

years old.  These aircraft have far exceeded their expected design life, and as such, are 

experiencing structural problems in the form of cracking and corrosion.  In addition to the 

age of the aircraft, the operations tempo over the past ten years has also significantly 

contributed to accelerating the deterioration of aircraft structures.  "The average age of 

military aircraft in 1973 during the Vietnam War was nine years, compared to today's 

average of 24 years. While the average age of aircraft is rising rapidly, the readiness to 

meet Air Force current missions, including Air National Guard readiness, has declined by 

17 percent since 2001, primarily because of the high operations tempo" [6].  As a result, 

the USAF is facing increases in maintenance and repair operations.  As Dave 

Montgomery reported in February 2007, "...maintaining older planes costs more money, 

and delayed modernization only leads to increased maintenance costs later. Maintenance 

costs increased 38 percent from 1996 to 2006; maintenance man-hours increased by 50 

percent compared with flying hours; and the workload for heavy repairs rose 41 percent" 

[7].  The USAF cannot sustain maintenance cost growth at such a high level and must 

operate more efficiently in an increasingly constrained economic environment.  A 
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properly designed ISHM system can help reduce the maintenance burden and decrease 

the cost of maintenance operations.  In addition, an ISHM system serves as a proposed 

method of filling the capability gap associated with the Major Combat Operations Joint 

Operating Concept and also through the AFSO21 construct. 

 3.2  JCIDS Perspective 

 The Joint Capabilities Integration and Development System (JCIDS) is the top-

down Department of Defense (DoD) process that defines a capability-based approach for 

acquisition and evaluation of defense systems.  The JCIDS process was established under 

Secretary of Defense Donald Rumsfeld through the Chairman of the Joint Chiefs of Staff 

(CJCS).  On 24 June 2003, the CJCS issued the Chairman of the Joint Chiefs of Staff 

Instruction (CJCSI) 3170.01.  This was established to address communications problems 

that arose during the first Gulf War.  Under previous requirements processes, numerous 

shortfalls existed.  Those shortfalls include not considering programs in the context of 

other programs, not sufficiently addressing joint warfighting needs, and insufficient joint 

service requirements prioritization.  The primary focus of the JCIDS process is to address 

required capabilities as identified by combatant commanders.  The change from a 

previous solution addressing specific threats, to a solution addressing specific capability 

needs has been a revolutionary shift in requirements ideology.   

In addressing specific capability gaps, there is a more disciplined way to identify 

appropriate solutions that can interact with legacy systems.  Whereas prior to JCIDS, 

requirements would be submitted for a specific weapon system, now the emphasis is on 
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stating the capability need and the JCIDS process should identify the appropriate solution 

to fill an identified capability gap.  This requires a disciplined look at multiple solutions 

to fill a capability gap and to choose the one that is most appropriate.  JCIDS mandates 

the evaluation of both materiel and non-materiel solutions.  This is important because 

previously a materiel solution was normally chosen as the first option, and materiel 

solutions tend to be the most expensive.  JCIDS requires the services to address the full 

spectrum of the solution space including Doctrine, Organization, Training, Materiel, 

Leadership and Education, Personnel and Facilities, or DOTMLPF for short.  Given this 

range of opportunities to explore for appropriate solutions to filling a particular capability 

gap allows for a thorough, encompassing analysis process and discipline to attain the 

most appropriate solution.  In the DOTMLPF spectrum, the materiel solution must be 

carefully considered in the context of the cost and time it takes to implement.   

The JCIDS process, (Figure 1), encompasses several key analysis steps including the 

FAA, FNA, FSA and a post-independent review.  This paper will not go into detail on 

each of these steps but will refer the reader to CJSI/M 3170.  This thesis will focus 

instead on the top-level originating requirement and how an ISHM system fulfills a 

documented capability gap identified in the JCIDS process. 
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Figure 1 - Joint Capabilities Integration and Development System Process 

The originating document that identifies a need for improved sustainment operations 

is the Major Combat Operations (MCO) Joint Operating Concept (JOC) version 2.0, 

December 2006.  This document describes at the operational level how the future joint 

force intends to conduct combat operations in support of national military objectives and 

helps guide future joint force development by identifying the operational-level objectives 

and essential capabilities required to successfully implement the concept.  The MCO JOC 

identifies broad capabilities required to fulfill required objectives.   One of these 

capabilities is, "Reduce the need for sustainment pauses, enabled by improved 

commonality, reliability, maintainability, sustainability, and survivability in order to 

conduct relentless operations" [8:C-3].  An ISHM system can directly impact reliability, 

maintainability, and sustainability for DoD aircraft.   
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3.3  Air Force Smart Operations for the 21st Century 

To meet the challenges of monitoring and improving aircraft structural integrity the 

Air Force and DoD are undergoing major transformations in the way daily operations are 

conducted.  The Air Force has implemented a program termed the AFSO21 initiative.  

AFSO21 is the Air Force’s overarching program guiding continuous process 

improvement in the Air Force [9].  The goal of AFSO21 is to “maximize value and 

minimize waste in all environments; operational, support and otherwise; to fully integrate 

continuous process improvement in to all we do across the Air Force” [9]. 

The AFSO21 initiative has defined four core key processes (Figure 2).   

 

Figure 2 – Four Core Key Processes [10] 
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One of the four Core processes is Develop and Sustain Warfighting Systems 

(D&SWS).  The Air Force Materiel Command Commander has been designated as the 

process owner for this effort and is responsible for designing, prioritizing, and leading 

Air Force-wide process improvement efforts in this core area.  The vision for the 

D&SWS core process is “Streamlined and Integrated Life Cycle Management…One 

Materiel Enterprise”.  In order to streamline and integrate life cycle management, the 

D&SWS effort has established several programs which trace their roots to DoD 

Directives (DoDD).  Specifically, DoDD 4151.18, Maintenance of Military Materiel, 

March 2004 and DoDD 4151.22, CBM+ Policy, December 2007.  These directives 

identify the need for "System health monitoring and management using embedded 

sensors; integrated data bus" [11:6], and "Decision support and analysis capabilities; on 

and off equipment; appropriate use of diagnostics and prognostics; automated 

maintenance information generation and retrieval" [11:6].  The AFSO21 requirements 

traceability is depicted graphically in figure 3. 
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Figure 3 - AFSO21 CBM+ Construct 

The capability gap associated with streamlining maintenance operations and 

sustainment activities can easily be traced to documented DoD directives and also 

through AF transformation initiatives.  An ISHM system could be an integral piece of the 

solution to fill that particular capability gap.    

  



 

26 

 

IV. Analysis of Potential Solutions 

 

4.0  Sensor Overview 

The main reason for SHM is to continuously monitor and diagnose a structure’s status 

and damage state.  Sensors are an intriguing concept with the potential to save 

tremendous maintenance costs.  Generally, sensors are intended to be placed at various 

aircraft inspection locations and utilized to determine if structural flaws (e.g. cracks, 

corrosion, etc...) exist.  Since there is a large potential payoff for this technology, there 

has been a plethora of research and development efforts focused on sensor technology 

development.  One area of research which is lacking however, is research focused on 

attaining "real-world" data.  Much of the research to date has been conducted in 

laboratory environments under controlled conditions. Very little data is available on the 

performance of various sensor concepts in operational scenarios.   Table 1 provides a 

short overview of some sensor technologies along with their basic physical principles, 

damage types, detection area, target materials and detection modes [13-14].  

Currently, inspection of aircraft structures is accomplished by several means 

including visual, eddy current, x-ray, dye penetrant and ultrasonic applications.  While 

these methods may be very labor intensive in some instances, they are proven solutions 

and have provided acceptable results.  In addition to the labor burden associated with 

these methods, often times just getting to the inspection location induces collateral 

damage to the structure.  This is another area where a distributed SHM sensor network 
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can provide an advantage in the form of more frequent structural assessments and in turn, 

less labor and collateral damage leading to a much lower overall cost. 

 

Table 1 - Short Overview of Some Technologies [14] 

Technology Basic Physical Principle Detectable 
Damage Types 

Detection 
Area 

Target 
Materials 

Detection 
Mode 

Fiber Bragg 
Gratings          
( FBG) 

Gratings written on the 
fiber core are subjected 
to strains (variation in 
length), which are caused 
by temperature changes 
(temp. sensor), or by 
local material strain, 
transmitted to the fiber. 

Loads        
Impacts  

Delaminations 
Local 

Metallic 
and 

composites 
On-line 

Acousto-
Ultrasonic’s 

(AU) 

Acoustic waves are sent 
through the material and 
received by specific 
transducers. A change in 
the material local 
behavior (and hence a 
damage) can be picked 
up and localized by an 
array of such sensors. 

Delaminations  
Cracks 

Global Metallic 
and 

composites 

Off-line 

Comparative 
Vacuum 

Monitoring 
(CVM) 

Open cracks generate 
leaks in a series of 
galleries bonded to the 
structures. A remote 
monitoring device tracks 
the pressure drop. 

Cracks 
Corrosion 

Debondings 

Local Metallic 
and 

composites 

Off-line 

Acoustic 
Emission   

(AE) 

Acoustic waves 
generated by small 
structural events 
(impacts, crack initiation, 
crack growth, 
delamination) are 
recorded by specific 
transducers when they 
occur. 

Impacts       
Cracks 

Delaminations 

Global Metallic 
and 

composites 
On-line 

Sensitive 
Coatings         

(SC) 

Coatings with integrated 
piezo- and ferro-electric 
elements being directly 
able to be bonded on a 
component surface or 
even integrated into a 
composite. 

Corrosion   
Cracks Global 

Metallic 
and 

composite 
Off-line 
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Technology Basic Physical Principle 
Detectable 

Damage 
Types 

Detection 
Area 

Target 
Materials 

Detection 
Mode 

Environmental 
Degradation 
Monitoring 

Sensors 
(EDMS) 

Multifunctional sensors 
capable of monitoring 
parameters such as 
temperature, humidity, time 
of wetness and pH. In 
conjunction with a corrosion 
model, corrosion prediction 
and detection is possible. 

Corrosion 
Local to 
sensor 

position 

Metallic 
and 

composites 

On-line 

Micro Wave 
Sensors    
(μW) 

Micro waves are send and 
received in a pitch-catch 
mode inside the material, 
and provide a picture of the 
water content 

Water 
ingress Local  Composites 

Sandwich 
Off-line 

Imaging 
Ultrasonic  

(IU) 

Classical ultrasound 2D 
images generated by newly 
developed integrated and 
miniaturized sensor 
networks 

All 
damages 
caught by 
ultrasonic 
methods 

Local  
Metallic 

and 
composites 

Off-line 

Foil Eddy 

Current 

sensors 

(ET) 

Eddy currents are generated 
in the structure. Their 
pattern and frequency 
distribution varies according 
to the presence of crack or 
other damages. 

Cracks,  
Corrosion Local Metallic Off-line 

 

For any given SHM problem there is not just one factor that determines which sensor 

system is the best one to choose.  Inspection locations will vary (e.g. materials, type of 

damage, environmental conditions, etc...) and therefore, sensors must be selected based 

upon the individual area to be monitored.  Reliability, durability, affordability, 

survivability, dependability, applicability, detectability and simplicity are all important 

factors to consider when selecting an appropriate sensor solution.  Many of the above 

sensor systems listed in Table 1 may satisfy some of the -ility requirements just 

mentioned, but it is very difficult to satisfy all of the issues with any one sensor system.  
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To meet all of the requirements, combinations of various sensor systems may be required 

[13].  Sensors are typically designed to detect a particular type of structural flaw and it 

may be possible to leverage the strengths of individual sensor types to form a network of 

different sensor types which is greater than the sum of its parts.   

The reliability and durability of SHM sensor systems depends to a great extent on 

how the different component materials perform and degrade with time and usage. With 

respect to aircraft structures; mechanical effects, electrical effects, thermal effects and 

chemical effects are four of the main environmental effects encountered by SHM sensor 

systems [13].  These issues highlight some of the sensor-related problems and may 

dictate which SHM sensor system is applicable to various scenarios.  Vibrations and 

stresses due to aircraft loading can cause mechanical effects.  Components close to the 

engine section may be affected by hot temperatures while body/wing surface sections 

may encounter very cold temperatures.  There may be electrical short circuits, 

electromagnetic interference or electrical conduction/insulation loss caused by various 

electrical effects.  Chemical effects include corrosion, moisture, and fluid susceptibility 

[13].  To overcome these negative effects, SHM sensor systems should be chosen with 

careful consideration and account for all environmental factors.  In addition, the 

geometric complexity of the inspection area must be considered.  Decisions must be 

made regarding the types of sensing methods that can be used to achieve the most 

efficient detection capability while simultaneously providing a high level of reliability 

and dependability [15].  The next two sections examine the two types of the sensor 

systems which are evaluated in the value model. 
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4.1 Piezoelectric Transducers (PZT) 

One of the leading SHM sensors being developed is the PZT sensor.  These sensors 

are typically bonded to the surface of a structure.  They operate by sending out and 

receiving energy in the form of elastic waves.  PZT sensors typically operate in two 

modes; pitch-catch mode in which one sensor sends waves to another sensor, or pulse-

echo mode where only one sensor is implemented and acts as both the sender and 

receiver of the waves.  In order to determine if damage exists, the sensors determine if 

there has been a change in the amplitude, phase, or frequency, of the elastic waves [13, 

5].  If the received wave is different from the wave which was originally propagated, then 

there is some sort of flaw in the material.  PZT sensors are thin wafers that can be 

attached easily to different surfaces.  Because PZT sensors are small, they may be useful 

in extremely tight inspection areas [15].   

A typical PZT sensor disk as shown in Figure 4, consists of piezoelectric material 

between two layers of conductive material.  The sensor is then attached to the substrate 

material of interest by using an adhesive bond layer [13]. 

 

 

Figure 4 - Digital Image and Cross-Sectional Cut Through PZT Sensor Disc [13] 
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Typically, a PZT sensor system needs to have more than one sensor to locate the 

damage by using the triangulation method; therefore, a network of sensors is normally 

implemented.  Figure 5 shows how a PZT sensor network could be implemented to detect 

and locate a structural flaw [4].  

 

Figure 5 - PZT Sensor Methodology [4] 

Since these sensors can both transmit and receive signals they are called smart 

materials. There are advantages and disadvantages to using PZT sensors in both the 

“pitch-catch” mode and pulse-echo mode.  In pitch-catch mode, there is an inherent 

redundancy to the system.  If one sensor fails, there is a second sensor which may still be 

able to perform the job.  A disadvantage is the increase in cost and maintenance of the 

extra sensors.  The reverse is true of single PZT sensor systems operating in only pulse-

echo mode [13, 4, 5].   

A case study done by Blackshire et al. depicts how the sensors work and how the 

signals are affected by a crack.  Figure 6(a) illustrates how a PZT sensor pair operates in 

a pitch-catch mode with no flaw present in the material.  Figure 6(b) illustrates how the 
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same pitch-catch pair operates with the presence of a crack in the material.  It is evident 

that the not all of the signal sent from sensor one reaches sensor two due to the 

interference from the crack. 

 

 

 

Figure 6 - Drawings Showing Propagation of Surface Waves Specimen [15] 

Figure 7 shows the amplitude of the signals when the sensors operated in “pitch-catch” 

mode.  It is evident that there is a change in the amplitude of the received wave due to the 

crack.  Figure 8 depicts the amplitude of the signals when the sensors operated in “pulse-

echo” mode.  In both figures it can readily be seen when the crack is present versus when 

it is not [15]. 

 

(b) During crack growth (a) Before crack formation 
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Figure 7 - Surface Wave Signals Detected with the Receiving Sensor, in Pitch-catch Mode. 

 

 

Figure 8 - Surface Wave Signals Detected with the Transmitting Sensor, in Pulse-Echo Mode 

Surface bonded PZT sensors are inexpensive, lightweight, and can be applied 

relatively easily for SHM applications [13].  There are many environmental conditions 

however, that can cause degradation and damage, ultimately resulting in sensor failure.  

According to test results from Blackshire et al., disbonded PZT sensors have serious 

degradation problems [13].  Various types of bonding agents to attach the PZT sensor to 

(b) During crack formation (a) Before crack formation 

(b) During crack formation (a) Before crack formation 
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the substrate material have been evaluated; however, the results are still inconclusive as 

to which material holds up better with respect to various environmental conditions [13]. 

4.2 Comparative Vacuum Monitoring (CVM) 

One of the most promising technologies existing today is Comparative Vacuum 

Monitoring (CVM).  In contrast to most other sensor types, CVM sensors have been 

tested during long-term testing programs in actual operating environment. These sensors 

have been installed on different types of aircraft (B757, B767 and DC-9) in the fleet of 

Delta Airlines and Northwest Airlines for functional evaluation.  CVM sensor durability 

testing was also conducted by the Australian Defense Science and Technology 

Organization (DSTO) and Airbus. No loss in sensor functionality due to temperature, 

chemical and ultraviolet exposure has been noted [13, 4, 16]. 

The CVM sensor consists of self-adhesive, elastomeric material, which has fine 

channels laser machined along the bottom surface to form alternating pressurized and 

vacuum galleries. Figure 9 shows a picture of a CVM sensor.  
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Figure 9 - CVM Sensor [16] 

 

The basic premise behind CVM technology is that if a crack occurs and ruptures one 

of the vacuum channels, a leakage path forms between the atmospheric and vacuum 

channels.  This leak produces a measurable change in the vacuum state, which is a 

positive indication that a crack exists under the sensor.  Figure 10 shows the CVM sensor 

detection methodology. 

 

 

  

(a) CVM sensors placed on both sides of rivet 
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(b) Cross-sectional cut through CVM sensor  

Figure 10 - CVM Crack Detection Methodology [16] 

 

One limitation of the CVM sensor is that once a crack is detected due to the change in 

pressure of the sensor, the sensor is no longer able to function.  This means that crack 

growth cannot be determined, only that a crack exists.  This may be acceptable in 

situations where the presence of any crack is a concern but could lead to false alarms if 

the crack length is not of concern until it reaches a specified critical length.  Tests show 

that CVM sensors can accurately detect cracks from 0.04” – 0.07” under loaded 

conditions.  For many aircraft inspection locations, this meets or exceeds the requirement 

for critical crack length.  Table 2 shows the crack detection capabilities of CVM with 

90% Probability of Detection [4].  
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Table 2 - CVM 90% Probability of Detection for Various Materials [4] 

 

 

The use of load-bearing elastomer materials and flexible/compliant adhesives will 

enhance the CVM sensor ability to withstand high loading stresses and temperature 

changes in the aircraft environment [13]. 

4.3 Prognostic Modeling 

An intriguing concept to SHM is the use of prognostic models to predict crack or 

corrosion growth.  Essentially, this amounts to developing software with the ability to 

accurately predict the structural state at specific aircraft locations.  This concept is not 

new and has been utilized for years in the aircraft design and maintenance communities.  
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In fact, many of the current maintenance inspection intervals in practice today were 

determined using various forms of component life analysis (prognostic modeling). 

     There are numerous limiting factors to the current analyses being conducted today.  

One major limiting factor is that the vast majority of models are being populated with 

notional aircraft load data generated using simulated flight profiles.  Using that type of 

analysis, it assumes every aircraft experiences the same loads and stresses which 

obviously is not the case.  Each aircraft experiences flight profiles unique to that 

particular aircraft.  When this type of analysis is combined with conservative risk 

assumptions to establish inspection intervals, the result is that the inspection intervals 

established are often conservative, leading to unnecessarily short inspection intervals. 

This research proposes that if the same analysis was performed utilizing the actual 

flight stresses and loads for each individual aircraft, a more accurate assessment would be 

produced.  Currently the aircraft profiles are captured and logged, but there is nothing 

done with them after that.  Should engineers and analysts use data already available and 

apply it to a software package tailored to perform structural life analysis, the result would 

be a more accurate assessment of individual aircraft structural health.  This would 

facilitate scheduling aircraft for maintenance only when deemed necessary by individual 

aircraft flight profiles. 

Through the course of the research team’s analysis and interviews with various depot 

maintenance engineers, they realized that this type of approach was just beginning to be 

pursued at the various Air Force depot maintenance locations.  
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V. Value Model 

 

5.0  Value Model 

The value model developed in this section is derived from the processes developed by 

Ralph Keeney [18] and Craig Kirkwood [19].  The intent of the model is to serve as a 

value-focused framework for decision makers to use in assessing various SHM options.  

The model is predicated upon a systems engineering analysis of the SHM issues currently 

faced by the research and development community, the acquisition community, and the 

maintenance and logistics community.  The values utilized in this model were attained 

through literature searches, subject matter expert input, or educated assumptions if no 

other data was readily available.  Given this fact, the presented results of the models 

should only be used as demonstrations of the types of insight and information the model 

can provide.  As further research is conducted in the area of SHM technology and more 

accurate data becomes available, the model can be refined to produce more accurate and 

representative results.  

5.1  Value Model Definition/Development 

5.1.1  Value-Focused Thinking Perspective and Development. 

Value-Focused Thinking (VFT) is a methodology of establishing a hierarchy of 

values a decision-maker desires, with respect to a problem to be solved, and then 

applying those values to determine how well certain alternatives satisfy the overall 
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problem.  According to Keeney [18], the typical, but not desired, decision making 

process is alternative-focused thinking.  Alternative-focused thinking, typically first 

considers the options available to the decision-maker, then determines what about each 

decision is desirable and finally selects an alternative.  Essentially, VFT reverses two of 

the steps in the alternative-focused thinking process (Figure 11). 

 

 

Figure 11 – Alternative-Focused Thinking vs. Value-Focused Thinking [18:49] 

It is essential to first identify a decision opportunity when using the VFT framework.  

The decision opportunity often occurs because of dissatisfaction with current methods, or 

because the current solution may no longer be an option.  Once a decision opportunity is 

identified, the decision-maker must determine what they value about the decision 

opportunity.  "Values of decision makers are made explicit with objectives" [18:33].  An 

objective is a statement of something that one desires to achieve.  When the set of values 

and objectives is established, some method of assessing the attainment of those values is 

needed.  The method of assessing value attainment is called a measure.  Measures are 
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characteristics of each alternative that are assessed to determine how well the alternatives 

satisfy the overall value. Measures need to be quantifiable (e.g., they need to be able to be 

quantitatively measured) and independent from each other.  Non-redundancy of measures 

ensures that there is no "double counting" [19:17] of measures in either a positive or 

negative manner.  In addition, the values and measures identified should incorporate all 

of the key aspects necessary to evaluate the overall objective of the decision [19:16].  

Once the values and measures are identified, they are then assigned weighting factors 

based upon input from key decision-makers and subject matter experts.  These weighting 

factors determine the relative importance, to the decision-maker, of each value and 

measure identified.  Finally, to implement a value measure, a single-dimension value 

function (SDVF) is created to score each measure.  SDVF's establish the score-to-value 

function that, in aggregate, forms the overall score of each alternative.  Because various 

values will require dissimilar measurements, an overall scoring requires the attainment of 

values to be standardized on a single scale.  A SDVF accomplishes this need.  The 

SDVF's are the lowest level of the hierarchy but are at the crux of the entire value model.  

It is at this level that each alternative's measures are scored to produce the overall score.   

Upon completing the process just described, the value model can be implemented as a 

tool to aid decision makers in choosing the alternative which best meets the values they 

desire.  The key advantages of a value-focused model over more traditional alternative-

focused models are that the decisions are quantifiable, defendable, and repeatable.  

Because there is a definitive score and ranking for each alternative evaluated, and all 

alternatives are evaluated against the same measures, the value-focused thinking model 

helps eliminate the bias of many alternative-focused decision processes.   
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Figure 12 depicts a generic value-model for any decision problem.  The overall 

decision problem is at the top of the hierarchy.  The second level in the hierarchy is the 

values established by the key decision makers along with their relative weightings.  

Subsequent to the values, are the individual measures used to evaluate each characteristic 

of interest.    

 

 

Figure 12 – Example Value Model Hierarchy 

Each measure is scored based upon the SDVF developed for that individual measure.  

The score is essentially a measure of "goodness" ranging from zero to one.  Each score is 

determined by evaluating the measure's independent variable (cost, performance, etc...) 

and determining the corresponding score.  Figure 13 provides an example of measuring 

power.  This example is used frequently if someone is purchasing a new vehicle and the 

decision maker chooses vehicle power as one of their values.  The measure of power was 
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chosen to be horsepower, and the SDVF was established with bounds from 109 

horsepower to 175 horsepower.  If the vehicle has 109 horsepower or less, it receives a 

score of zero (it is of no value to the decision maker).  If the vehicle has 175 horsepower 

or greater, it receives a score of one (it completely satisfies the value of that measure).  

Any horsepower rating between 109 and 175 receives a score based upon the SDVF 

established for this measure.  

 

Figure 13 - Example SDVF [courtesy Dr. Jeffrey Weir] 

The final product of the value model is a rank-order of all alternatives which were 

considered in the model.  The rank-order is determined based upon the final "score" of 

each alternative.  The score is determined by first taking the SDVF score for an 

individual measure (between zero and one), then taking the product of the score, measure 

weighting and value weighting.  The following example illustrates how the score is 

determined. 
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Figure 14 - Example Value Model Scoring 

The alternative evaluated in Figure 14 would receive an overall value score 

determined as follows: 

Value = (0.73)(0.60)(0.40) + (0.85)(0.40)(0.40) + (0.42)(1.00)(0.25) +  

              (0.35)(0.75)(0.35) + (0.80)(0.25)(0.35) = 0.5781 

After scoring each alternative, a final rank-order of all alternatives considered is 

determined.  The final rank-order can then be used by decision makers to determine 

which alternative best satisfies the overall value. 

5.1.2  SHM Value-Model Development. 

Currently, there are various SHM approaches being pursued by the Air Force and the 

DoD attempting to improve aircraft structural awareness.  What is lacking however is a 

decision tool to aid decision makers as to which SHM approach is best for a given 

situation.  As with any problem, there are multiple solutions, and no one solution is going 
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to be best for all situations.  This research utilized the value-focused thinking approach 

just described and applied it to create an SHM value model framework.  

Stakeholders were identified by evaluating all aspects of a structural health 

monitoring problem from research and development through system retirement and 

disposal.  The stakeholders identified were research and development engineers and 

scientists, program managers, acquisition personnel, maintenance personnel, sustainment 

personnel from Robins Air Force Base, Georgia, and Hill Air Force Base, Utah, and 

academic professors with backgrounds in structural health monitoring, systems 

engineering and operations research.  The input gathered from this wide array of experts 

provided the key framework for constructing the value model. 

A software add-in package for Microsoft Excel called Hierarchy Builder Version 1.01 

[20] was utilized to create the value hierarchy and compute the values for the value 

model.  This software add-in was written by Dr. Jeffery Weir, a faculty member in the 

AFIT/ENS Operations Research department.   

Creating the value model began with first identifying the overall top-level objective.  

It was decided that the desired objective, or value, was to know the condition of the 

structure of interest.  We classified this top-level objective as "Structural State 

Awareness" in our model. 

The second tier of the value hierarchy depicts the values determined to be of 

significance to satisfy the overall objective and their respective weighting.  The values 

and weighting factors for the SHM model were established by several methods.  The 
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research team conducted several brainstorming sessions, consulted with experts in SHM, 

logistics and maintenance, research and development, and searched open-source 

literature. 

The final tier of the value-model depicts the measures considered and their relative 

weighting.  The measures and weightings were determined in the same manner as the 

values.  Figure 15 shows the overall SHM value hierarchy as determined and 

implemented in this research.  A full-size figure is also located in Appendix A 

 

Figure 15 - SHM Value Model 

5.1.3  Definition of Model Parameters. 

Establishing the definitions for each measure takes a tremendous amount of thought 

and careful analysis.  There are many different interpretations of a measure, so it is 

imperative to define the measures explicitly in order to minimize confusion and ensure 

the model is applied consistently.  The values and measures categorized in Figure 16 are 

defined as follows: 
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COST  

Procurement: Cost to buy a “finished” system.  A “finished” system is one that the user 

deems acceptable for their use.  It includes the cost of the system and any ancillary 

equipment necessary for operation.  Essentially, this is the cost to purchase the system 

from the manufacturer.  The procurement cost is determined for fleet-wide 

implementation, and then divided by number of aircraft intended for use to determine a 

per-aircraft cost. 

Development: Cost to mature the system to specified technology readiness level (TRL) 

from its current state of readiness.  Specified TRL is dependent upon what would satisfy 

a particular customer.  Some customers will require a higher TRL than others.  

Development cost is also determined on a per-aircraft basis. 

Training: Cost to train personnel on the proper use and maintenance of the system.  The 

cost is determined based upon establishing training courses, materials, and time required 

to perform training.  Training cost is also determined on a per-aircraft basis. 

Installation: Cost to install the system on the appropriate platform.  For example, cost to 

install sensors onboard aircraft, cost to install a new flight data recorder, or cost to install 

software model on computers.  Installation cost is also determined on a per-aircraft basis. 

Operation: Cost to operate the system for a given number of inspections.  Includes cost to 

prepare the aircraft for inspection, perform the inspection, and put the aircraft back 

together following the inspection.  Operation cost is dependent on the inspection location, 

method of inspection, and number of inspections performed in a five-year period. 
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PERFORMANCE 

Probability detection/prediction: Probability of accurately detecting or predicting a flaw 

at a given aircraft inspection location at a predicted time.  Establishing probability of 

detection for given SHM solution alternatives is very time intensive, so for this model 

POD numbers are assumed for each alternative.    

Probability of false detection/prediction (Type I error): Probability of false 

detection/prediction.  This includes the probability of a given SHM solution 

detecting/predicting a flaw when in fact no flaw exists.  For this model, we include 

performing a manual inspection and not finding any flaw (e.g., current schedule-based 

maintenance inspections) as a false detection. 

Reliability: Percent of time system operates correctly in a realistic operational 

environment.  This area of SHM is extremely subjective and very little research has been 

accomplished to accurately assess SHM system reliabilities.  For this model, reliability 

values will be assumed. 

LOGISTICS 

Aircraft Downtime – Number of hours an aircraft is down for the specified inspection.  

This includes number of inspections multiplied by the number of hours per inspection 

over an assumed five-year period. 

System Maintenance and Management – Time required per year to maintain and manage 

the logistical aspects of the system.  This measure is determined on a per-aircraft basis.  
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TIME TO FIELD 

Number of years required to mature the technology to an acceptable level as determined 

by the user. 

Table 3 summarizes the measures and SDVF's established in the value model.  The graph 

of each SDVF can be found in Appendix B, D and F. 

Table 3 - Value Model Measure Parameters 

MEASURE 
MEASURE 

UNIT MEASURE TYPE 
LOWER 
BOUND 

UPPER 
BOUND 

Cost 

Procurement Dollars Linear (decreasing) 0 Varies by 
inspection 

Development Dollars Linear (decreasing) 0 Varies by 
aircraft 

Training Dollars Linear (decreasing) 0 Varies by 
aircraft 

Installation Dollars Linear (decreasing) 0 Varies by 
inspection 

Operation Dollars Linear (decreasing) 0 Varies by 
inspection 

Performance 

Probability of 
Detection Probability Linear (increasing) 0.90 1.00 

Probability of 
False Detection Probability Linear (decreasing) 0 0.50 

Logistics 

Aircraft 
Downtime 

Hours Linear (decreasing) 0 
Varies by 
inspection 
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MEASURE 
MEASURE 

UNIT MEASURE TYPE 
LOWER 
BOUND 

UPPER 
BOUND 

Technology 
Readiness     

Time to Field Years Linear (decreasing) 0 5 

 

The measure input parameters used to populate the model must be determined for 

each alternative to be evaluated.  For the SHM model in this research, the values were 

determined either through calculations, information provided by various manufacturers, 

or assumed values based upon the most relevant data available.  Due to the fact that the 

model is predicated upon a specific aircraft, per inspection location basis, it was 

necessary to determine measure values which were representative of that fact.  

Procurement, installation and operation costs are functions of the number of systems 

required to adequately perform the inspection and expected number of inspections over 

the life of the SHM system.  Measures for development and training were considered 

one-time expenses and were calculated as total costs, and then divided by the number of 

aircraft in the platform fleet.  Table 4 summarizes the value model parameter 

calculations. 
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Table 4 - Value Calculations 

Measure Calculation 
Procurement (dollars) (Number of systems required) * (Cost/system) + Cost of 

support equipment 
Development (dollars) Development cost / Number of aircraft 
Training (dollars) $2.5M / Number of aircraft 
Installation (dollars) $240/hr * Number of systems required / Number 

installed/hour 
Operation (dollars) $240/hr * Inspection time required * Number of 

Inspections 
Probability of Detect varies by alternative (0.90 < x < 1.00) 

Probability of False Detect varies by alternative (0.00 < x < 0.50) 

Reliability varies by alternative (0.90 < x < 1.00) 
Aircraft downtime (hrs) varies by alternative 
System Mgmt & Mx (hrs) varies by alternative 

Time to field (years) varies by alternative 

Several assumptions must be made in order to utilize this model.  The following list 

details the assumptions made for the three inspection locations to be analyzed: 

1. An assumed SHM system life of five years was used.  This assumes the system 

under consideration operates for five years, and then must be replaced. 

2. The alternatives considered are all applicable to the specified inspection location. 

3. Procurement Cost: the cost of the SHM alternatives is assumed to be $10/sensor 

for PZT plus $15,000 for support equipment, $50/sensor for CVM plus $25,000 

for support equipment, $50,000 for prognostic model, and zero for current 

operations.  These values are on a per aircraft basis. 

4. Development Cost:  the fleet-wide development cost of the SHM alternatives is 

assumed to be $5M for PZT, $1M for CVM, $5M for prognostic model, and zero 
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for current operations.  The actual value measure is determined on a per-aircraft 

basis. 

5. Training Cost: it is assumed that the fleet-wide training cost for the PZT, CVM 

and prognostic model are all $2.5M, whereas the cost for current operations is 

zero.  The actual value measure must be determined on a per-aircraft basis. 

6. Installation Cost: an assumed labor rate of $240/hour [4:93] was used.  The 

number of systems required varies by alternative and inspection location, and the 

number installed per hours was assumed to be four/hour for PZT, four/hour for 

CVM, 0.5/hour for prognostic model, and zero for current operations. 

7. Operation Cost: an assumed labor rate of $240/hour was used.  The inspection 

time required was determined by using current T.O. information for the specified 

inspection for current operations.  The value for PZT and CVM was assumed to 

be 33% of current operations.  This value was chosen based upon the assumption 

that the area of interest would still need to be manually inspected once every three 

inspection intervals to check the condition of the sensors and ensure their 

integrity.  An assumed value of four hours was used for the prognostic model. 

8. Probability of Detection:  the values for POD were assumed to be 0.90 for PZT, 

0.93 for the prognostic model, and 0.95 for CVM [21] and current operations 

[22]. 

9. Probability of False Detection:  The values assumed for probability of false 

detection were 5% for PZT and CVM, 20% for prognostic model, and 30% for 

current operations. 
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10. Reliability: reliability was assumed to be 0.90 for PZT and CVM, 0.95 for current 

operations, and 0.99 for prognostic model. 

11. Aircraft Downtime:  downtime was calculated based upon the time required to 

perform the inspection.  For PZT, CVM and prognostic model, it was assumed 

that the downtime would be 33% of that for current operations.  This number was 

chosen with the expectation that the area of interest would still need to be 

manually inspected once every three inspection intervals to check the validity of 

the sensors or model.  The value for current operations was determined from 

current T.O. data. 

12.  System Maintenance and Management:  assumed values were determined on a 

per-aircraft basis.  The larger the number of systems required for the inspection, 

the higher the assumed value. 

13.  Time to Field:  the value for PZT was assumed to be four years, CVM was 

assumed to be one year, prognostic model was assumed to be three years, and 

current operations is zero.  

5.2  Value Model Application and Results 

5.2.1  Examples of Model application. 

To demonstrate the model developed in section 5.1, an analysis of three specific 

aircraft inspection locations will be examined.  The locations of interest selected for 

demonstration purposes are the C-130 center wing rainbow fittings; the A-10 engine 

thrust mount, and the F-15 vertical stabilizer torque box splice.  These locations were 
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selected because they provide a wide range of inspection times, are current SHM areas of 

concern, and they demonstrate the versatility of the value model in being applicable to 

any airframe.   

          5.2.1.1  C-130 Rainbow Fitting Example. 

  The C-130 rainbow fitting is a great area of concern for the C-130 airframe.  

Currently, the C-130 is experiencing fatigue cracks where the outer wings attach to the 

center wing box as depicted in Figure 16 and Figure 17.  The area of concern is the upper 

and lower "rainbow fittings".   

  

Figure 16 - C-130 Center Wing [23] 
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Figure 17 - C-130 Center Wing with Outer Wing Removed 

This location is very highly loaded due to the fact that the outer wing contains fuel, 

engines, structure, etc, and is cantilevered out from the fuselage.  An example of the 

fatigue cracks which are developing in the center wing attach points is depicted in Figure 

18.   

 

Figure 18 – Typical C-130 Rainbow Fitting Crack 
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The current method of inspection for the rainbow fittings is to remove a bolt, inspect 

the surface using bolt hole eddy current technique and replace the bolt.  This is done for 

each of the 24 attach points on both the left and right side of the aircraft.  The time  

required to perform this inspection using current methods is 360 minutes [23].  This time 

is for inspection only and does not account for aircraft preparation or putting the aircraft 

back together following the inspection.  Time for aircraft preparation and putting the 

aircraft back together is estimated to be an additional 360 minutes.  This location could 

also be monitored for structural health using a variety of sensors, through use of more 

accurate life prediction tools, or by manual inspections as they are currently being 

accomplished.  Currently the inspection frequency for the rainbow fittings is determined 

by aircraft usage.  Aircraft with less than 24,000 equivalent baseline hours (EBH) are 

inspected every 400 flight hours, whereas aircraft with more than 24,000 EBH are 

inspected every 80 flight hours [23:11].  For this example we will assume the worst case 

scenario of an inspection every 80 flight hours.  An assumption must also be made as to 

the number of flight hours per year the aircraft accrues in order to determine the number 

of inspections required.  For this example, it is assumed that the aircraft accrues 800 

flying hours per year and therefore would require 10 inspections per year.  Given an 

assumed SHM system life of five years, the total number of inspections is 50.  The 

number of systems required to perform the inspection is estimated to be 192 for PZT, 192 

CVM, one prognostic model, and zero for current operations.  Aircraft down time was 

calculated as 600 hours (50 inspections multiplied by 12 hours/inspection) over five 

years, the assumed expected life of each SHM alternative.  For this analysis it was 
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assumed that the SHM alternatives would be implemented on the entire fleet of 435       

C-130 aircraft [24].  Table 5 depicts the values used to assess this inspection location. 

Table 5 - C-130 Value Model Input Parameters 

 

Given the preceding values and assumptions, the VFT model generated the list in 

Figure 19, depicting how well each alternative satisfied our overall value of structural 

state awareness. 

 

Figure 19 – SHM Value Model Results for C-130 Rainbow Fitting 
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Analyzing the results one can see that the SHM alternative of “Continue Current 

Ops” provides the most value (0.604).  This means that this alternative satisfies 60.4% of 

our overall value of structural state awareness.  This result indicates that even though 

continue current operations is our best alternative of the ones considered, it still does not 

provide a very good solution since it only satisfies ~60% of our desired value.  The 

prognostic model which scored as the second best alternative considered, is close to the 

same value, within ~3%, as current operations.  This indicates that this alternative could 

also be examined using a more thorough assessment to determine if it should be 

implemented.  It is evident in our example that PZT sensors provide the least value to us 

currently because they score low in logistics, performance, and technology readiness.  

Not accounting for an entire system approach is a major factor limiting implementation 

of structural health monitoring concepts in today’s environment. 

A sensitivity analysis can be performed on any of the values or measures listed in the 

SHM value-model developed in section 5.1.  The sensitivity analysis examines the effect 

on overall ranking of the alternatives if the weighting factors are adjusted.  This 

sensitivity analysis helps solve conflicts when decision makers may have differing 

opinions of the weighting factors used in the analysis.  For example, Figure 21 is the 

sensitivity analysis for cost for the C-130 rainbow fitting.  Currently, the weighting factor 

for cost is 30%, indicated by the solid vertical line.  If the weighting factor for cost were 

adjusted to zero percent (indicating the decision maker cared nothing about cost), while 

increasing the remaining value weights of performance, logistics, and time to field 

proportionally, the overall ranking of alternatives would change.  In this case, the number 
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one alternative would become the prognostic model and continue current operations 

would become the second best option.  On the other hand, if the decision maker cared 

100% about cost and zero about the other values of performance, logistics, and time to 

field, the continue current operations option would again be the best alternative, followed 

closely by the CVM and PZT options.  This sensitivity analysis helps decision makers 

identify where changes in the overall ranking of alternatives occur for given changes in 

weighting factors.  Looking at Figure 20, if the weighting factor for cost is anywhere 

between 15% and 100%, continue current operations remains the highest scoring 

alternative.  

 

Figure 20 - C-130 Sensitivity Analysis for Cost 

As long as the decision making group agrees that the weighing factor for cost lies 

somewhere between 15% and 100%, the highest scoring alternative in this case will not 

change, but there will be changes in the order of the remaining alternatives.  A similar 
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sensitivity analysis for performance and logistics was performed and the results are 

included in Appendix C. 

          5.2.1.2  A-10 Engine Thrust Mount Example. 

For a second example of applying the value model to an SHM decision opportunity, 

an analysis of  the A-10 engine thrust mount is examined.  The specific location is 

depicted in Figure 21.   

 

Figure 21 – Schematic of the A-10 Engine Thrust Mount [25] 

This is a location of concern because if a failure occurs at this point, loss of an engine 

is possible.  Due to its proximity to the engine, this location on the aircraft experiences 

severe vibration and heat.  This location could also be monitored by using a variety of 

structural health monitoring techniques such as sensors, component life prediction tools, 

or by continuing to perform manual inspections as are currently done.  For this example, 



 

61 

 

it is assumed that all of the SHM alternatives considered would be applicable to this 

location, however due to the environmental conditions around the area of concern, 

significant improvements in current performance and durability characteristics of SHM 

sensors would need to occur for this to truly be the case.  Current inspections are 

conducted via eddy current surface probe and take approximately 30 minutes to conduct 

and an additional 30 minutes for aircraft preparation and clean-up.  For this analysis it is 

also necessary to assume the number of SHM systems required and anticipated number of 

inspections that will be conducted over the life of the SHM system.  In this example, 32 

PZT sensors, 16 CVM sensors and one prognostic model were chosen as necessary to 

monitor the area of concern.  The inspection interval was assumed to be 250 flight hours, 

and an assumed flight-hours of 400/year were used.  This leads to approximately eight 

inspections over the five year assumed SHM system life, and aircraft downtime of eight 

hours.  Similar to the previous example, the authors assumed the SHM alternatives would 

be implemented on all 367 aircraft in the inventory [26].  Table 6 depicts the values used 

to assess the various SHM alternatives for this inspection location. 
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Table 6 - A-10 Value Model Input Parameters 

 

Given the preceding discussion and values, the value model developed in section 5.1 

was applied to the A-10 engine thrust mount location.  Figure 22 displays the result of 

this analysis. 

 

Figure 22 – SHM Value Model Results for A-10 Engine Thrust Mount 
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 It is evident from Figure 22 that continuing current operations is by far the most 

valuable alternative.  This makes intuitive sense as well because this inspection location 

takes very little time (~1 hour) to perform manually, so it does not make sense to utilize 

an alternative SHM system for such a simple inspection.  The same sensitivity analysis 

performed for the C-130 example was also performed for the A-10 example.  The 

sensitivity analysis for performance is shown in Figure 23. 

 

Figure 23 - A-10 Sensitivity Analysis for Performance 

This sensitivity analysis indicates that continuing current manual inspection methods 

is the best alternative until performance is weighted at 90% or higher.  As long as the 

decision making group agrees that performance will never account for 90% or greater of 

the overall decision, continuing current operations will remain the best option.  Similar 

results were obtained for the sensitivity analysis performed for cost and logistics and can 

be found in Appendix E.  In actuality, this inspection location would most likely not even 

be considered for alternative SHM techniques because it is such a simple manual 
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inspection which takes very little time and expense; however, it was chosen as an 

example in order to demonstrate the versatility of the model. 

          5.2.1.3  F-15 Vertical Stabilizer Torque Box Splice Example. 

The third and final inspection location this research examined is the F-15 vertical 

stabilizer torque box splice depicted in Figure 24 as IAT 7, and in more detail in Figure 

25 [27:957].  This location is also a known structural health issue.  The vertical stabilizer 

torque box experiences both shear and normal forces which over time fatigue the material 

and lead to a degraded structure.  If left unchecked this structure will eventually fail with 

possible catastrophic results.   

 

Figure 24 - F-15 IAT Locations [27] 
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Figure 25 - F-15 Vertical Stabilizer Torque Box Splice [27] 

Current inspection methods utilize eddy current probe measurements of fastener holes 

on both sides of each vertical stabilizer to determine if cracks exist.  The time to conduct 

the inspection is approximately 210 minutes [28:243].  The required time for aircraft 

preparation and clean-up is assumed to be 150 minutes.    The time between inspections 

is assumed to be 150 hours, and the estimated hours accrued per year are 200 hours.  

Given an assumed SHM system life of five years, this leads to a total of approximately 

seven inspections over the life of the system.  The number of systems required to perform 
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the inspections was estimated to be 128 PZT, 90 CVM and one prognostic model.  The 

current inventory of F-15s is 522 [29], and this analysis assumes all will have the 

respective SHM system installed.  Table 7 depicts the values used to assess this 

inspection location. 

Table 7 - F-15 Value Model Input Parameters 

 

Given the preceding discussion and values, the value model developed in section 5.1 

was applied to the F-15 vertical stabilizer torque box location.  Figure 26 displays the 

result of this analysis. 
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Figure 26 - SHM Value Model Results for F-15 Vertical Tail Torque Box 

It is evident from the results that continuing with the current manual inspections 

provides the most value for this inspection location.  This option was the most valuable 

because it was the most cost effective as indicated on the bar graphs.  The SHM 

alternatives of the CVM sensor and the prognostic model were relatively close in value, 

and the PZT sensor alternative provided the least value.  A sensitivity analysis was also 

performed for cost, performance and logistics and can be found in Appendix G. 

5.2.2  A Case for Sensors 

Given the three cases just presented, the result was the same in each: continue current 

operations was the most valuable option.  This is consistent with current Air Force 

practices, however it begs the question; "What would it take for any other option to 

become the best?"  There is no specific answer to this question, but there are several 
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factors in any number of combinations that would lead to other alternatives being the best 

option.  For example, cost could be decreased, performance improved, logistics footprint 

reduced, and technology readiness improved.  The research team then re-examined the C-

130 rainbow fitting case with several new assumptions.   

The new assumptions for the C-130 rainbow fitting case were all cost parameters 

remained the same, probability of detection was increased to 0.95 for both PZT and CVM 

sensors, reliability was increased to 0.95 for both PZT and CVM sensors, system 

maintenance and management was decreased to 10 hours/year for PZT and CVM sensors, 

and finally, time to field was reduced to one year.  Table 8 summarizes the updated 

measures used in this example. 

Table 8 - Updated C-130 Measures 

 

These new values are reasonable as they are consistent with the values utilized for the 

"continue current operations".  Essentially, the research team is making the assumption 

that a sensor solution parameters are as good as current maintenance practices.  Given 
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these new values, Table 9 depicts the new parameters utilized as inputs for the value 

model. 

Table 9 - Updated C-130 Value Model Inputs 

 

The results of the value model with the updated inputs are depicted in Figure 27. 

 

Figure 27 - Updated SHM Value Model Results for C-130 Rainbow Fitting 
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As evident in Figure 27, the top two options are now sensors (CVM and PZT 

respectively).  This indicates that if sensors can improve in performance, reliability, and 

time to field as presented above, they provide the most value to solving our structural 

state awareness issue.  These results can also help decision makers decide where it makes 

sense to focus research and development dollars.  In the example just provided, decision 

makers now have some insight as to which parameters affect various SHM alternatives.  

With this knowledge they now have the ability to focus their efforts in a more cost-

effective manner.     

5.2.3  Summary of Results 

The value model was applied to three different aircraft and three different inspection 

locations.  This emphasizes the versatility and flexibility of the model to be applied to 

virtually any aircraft and inspection location.  In all three scenarios examined, the SHM 

alternative that provided the most value as assessed by the model was to continue 

performing maintenance as is currently being done today.  The reason for this is that even 

though alternative forms of SHM may provide a reduced operational cost in the form of 

fewer aircraft inspections and reduced aircraft downtime, those gains are often offset by 

the cost, performance, and logistics burden incurred with adding another system to the 

aircraft.  This was substantiated by the discussions the research team conducted with 

program office engineers and maintenance personnel at Warner-Robins AFB and Hill 

AFB.  In order to determine what it would take for any other SHM alternative to become 

the best option, the research team then re-evaluated the C-130 scenario utilizing new 

values for probability of detection, reliability, system maintenance and management, and 
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time to field.  The results utilizing these new parameters indicate that there are scenarios 

where it may make sense to utilize alternative forms of SHM.  This result is predicated 

however, on the assumption that sensor technology advances to the point where it 

becomes on par with current operations. 

In order for any alternative form of SHM to be widely implemented one or a 

combination of several things must happen.  The overall cost of alternative SHM methods 

must be reduced, performance must be increased, the logistics impact must be kept to a 

minimum, and they need to be ready for operational use quickly.  The overall cost 

(procurement, development, training, installation and operation) must be reduced to a 

point where they are an economically viable option.  The performance must also be equal 

to or better than what is obtained with current NDE inspection methods.  As the 

performance of alternative SHM system improves, they also become a more viable 

option.  Finally, the increased logistics burden associated with adding any system to an 

existing aircraft must be kept to a minimum.  The maintenance and logistics personnel 

currently operating today’s aircraft are doing their best just to keep the aircraft flying, and 

adding additional workload in the form of additional system maintenance must be kept to 

an absolute minimum if any alternative form of SHM is to be accepted. 
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VI. Conclusions and Recommendations 

 

6.0  Conclusions and Recommendations 

Throughout the research conducted for this study, several conclusions emerged.  Each 

conclusion then led to a recommendation(s) for near-term and/or long-term consideration.  

The authors hope that the accomplishment of the recommended actions will further the 

development of an integrated system that gives logisticians, maintainers, and engineers a 

better understanding of the structural state of each aircraft in the aging fleet and advance 

the ISHMS concept closer to implementation.  

6.1  ISHMS—An Integrated Solution 

By definition, an ISHMS must be developed using an integrated, holistic approach to 

accomplishing SHM.  By incorporating elements from a wide range of options and 

enabling technologies, an integrated system captures the best features of each alternative 

and, in true “systems” style, leverages the synergies among them to produce a system that 

is more effective than the sum of the individual parts.  From continued current operations, 

such as eddy current detection, to improved data collection and management to emerging 

sensor technologies and predictive modeling, each alternative presents its own benefits 

and shortcomings.  To develop an optimal solution, an ISHMS must embrace the positive 

attributes of each aspect while minimizing the drawbacks. 
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Recommendation 1

6.2  Value Model  

:  Any future research and development of an ISHMS must take a 

broader, whole system perspective than just focusing on a technology solution.  While 

sensors and models are likely a piece of the system solution, opportunities exist to 

improve current operations, training, and data collection and management.  The question 

to be answered is, “How can we take advantage of simple, inexpensive—or even better 

no cost—process improvements and COTS technology to gain a better understanding of 

the state of  the aircraft structure, as well as minimize damage induced by the inspection 

process itself?”  Every aspect must be reviewed and scrubbed, and the entire scope of 

SHM practices and enabling technologies must be considered in order to achieve CBM 

and AFSO21 goals.   

6.2.1  Tailored Solutions. 

The value model presented herein is a flexible and scalable decision tool.  It can be 

easily modified and refined for different platform types, individual tail numbers, or even 

particular locations on a particular platform to help users make informed decisions on the 

best alternative(s) for a given situation.   

Recommendation 2:  A follow-on study should be conducted that focuses on applying 

the value model to determine the best alternative(s) using validated inputs for a real-

world SHM scenario(s).  Given the appropriate set(s) of data, seemingly endless 

opportunities for using this model as a decision tool exist.  These include, but are not 
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limited to, using the model to tailor SHM activities and enabling technologies for not 

only individual tail numbers but specific locations on each aircraft. 

6.2.2  Drive Future Efforts. 

Of equal importance is the model’s ability to highlight current weaknesses of each 

alternative.  By identifying areas of greatest opportunity for improvement, researchers 

can better focus their efforts to advance certain technologies and overcome associated 

implementation challenges.  Additionally, developers can use the model to lay out system 

requirements and determine cost and performance measures that must be demonstrated 

by each alternative in order to be a viable option for implementation.    

Recommendation 3

6.3  Sensor Technology  

:  Once validated inputs have been used to analyze a real-world 

SHM scenario, areas of weakness must be identified to drive R&D toward solutions that 

will be feasible to implement.  This assessment should include system cost and 

performance requirements for each enabling technology currently under development. 

6.3.1  Applicability. 

   Sensor technologies have broad applicability and utility for new aircraft, such as 

the F-22, F-35, and future KC-45, as they roll off the production line.  However, 

implementation of sensors on the legacy fleet presents unique challenges that limit 

applicability.  The value model can help identify where it makes sense to install sensors 

once the keys to implementation (discussed in the next section) are adequately satisfied.   
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Recommendation 4:  Assuming these keys to implementation are met, proven sensor 

technologies must be evaluated for implementation on aircraft that are currently being 

produced and/or projected to be produced in the future.  Platforms such as the F-22, F-35, 

and the proposed tanker are all excellent candidates for including crack- and corrosion-

detecting sensors as part of an ISHMS design.  And as key enablers of CBM, these 

sensors have the potential to significantly cut O&M costs over the service life of the 

aircraft.   

Recommendation 5

6.3.2  Keys to Implementation. 

:  Given the complex nature and associated expense of installing 

sensors on legacy platforms, the value model should be used to determine where/when to 

incorporate sensors into an aging aircraft ISHMS design.  The unique challenges 

presented by retrofitting the fleet are too fiscally and logistically cumbersome to 

speculate on the potential benefits.  In an objective, traceable manner, the value model 

can/should be used to clearly point decision makers toward installation of sensors on 

legacy jets before bearing the burdens of doing so can be justified.  

          6.3.2.1   Cost-Benefit Analysis. 

However, before sensors are integrated into any ISHMS design, an in-depth, detailed 

cost-benefit analysis must reveal a compelling business case.  In the case of existing 

aircraft, without clear evidence that a positive return on investment would be realized in a 

relatively short period of time, neither the operational community (ACC, AMC, AFSOC) 
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nor the logistics centers will be able to justify the expense associated with developing and 

implementing sensor technology for SHM purposes. 

Recommendation 6:  A detailed cost estimate and cost-benefit analysis of sensor 

development and implementation must be completed.  This study could be done as a 

stand-alone project or incorporated into the real-world scenario study previously 

recommended (ref. Recommendation 2.)  If the results of the analysis indicate a favorable 

return on investment is likely to materialize in a suitable period of time (i.e., sometime 

before the aircraft is expected to be retired), continued research and development of SHM 

sensors is warranted.  

          6.3.2.2  Demonstrated Durability & Reliability. 

In addition to a convincing business case, sensors must demonstrate they can be 

trusted.  Maintainers cannot afford a significant number of false alarms which create 

more work, unnecessary downtime, and chew up valuable resources.  Conversely, if the 

sensors are unreliable (i.e., fail to detect a critical flaw in the structure), safety of flight 

may be compromised.  To date, results of sensor durability and reliability tests are 

inconclusive. 

Recommendation 7:  The test community should begin a flight demonstration on a 

variety of platforms, placing sensors in locations that have been identified by the value 

model as good opportunities for sensors to streamline current SHM operations.  The C-

130 center wing location that was examined in this study would be a prime candidate for 

this test program.   The purpose of the demonstration would be to prove out the durability 
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and reliability of one or more sensor types by exposing them to real-world operational 

environments.   

Further it would serve as an initial phase in a 3-phase implementation plan.  During 

this first phase, current inspections would continue as the sensors are being tested.  Once 

confidence is gained in the sensors’ ability to accurately meet SHM objectives, a second 

phase would begin and call for inspections to be skipped as was modeled in Chapter 5.  

Ultimately, after the sensors have been fully tested and prove to be durable enough and 

reliable enough to survive and operate properly in an operational environment, a third 

phase of implementation that transitions operations to a total CBM concept and 

eliminates scheduled inspection cycles would be appropriate.  During this CBM nirvana, 

inspections only occur when a sensor indicates damage has been incurred, and thus the 

aircraft must be inspected and possibly repaired.   

6.4  Information Collection & Management 

Currently, a central database captures flight and maintenance action information to 

estimate remaining useful life.   However, other technologies exist that could streamline 

data collection and improve the fidelity and effectiveness of the predictive models.  For 

example, a simple, but robust flight data recorder that is used regularly in commercial 

airline operations offers engineers easy access to information related to the environment 

and loading to which the aircraft has been exposed.   This information can then be fused 

with other clues to provide a clearer picture of the aircraft’s structural state and perhaps 
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yield enough insight to confidently stretch inspection intervals, thus reducing downtime 

and saving resources. 

Recommendation 8

6.5  Political Reality 

:  Readily available technologies that are intended to streamline 

data collection efforts and/or improve the fidelity of the existing models should be 

explored.  Future technologies that enable the collating and analysis of multi-sourced data 

sets should also be pursued.  Such advances can increase awareness of the aircraft’s 

structural state without necessarily taking it out of service for inspection thus reducing 

asset downtime and saving O&M dollars.  

Within the operational community (ACC, AMC, AFSOC), the contemplation of 

extending the service life of the aging aircraft fleet, particularly discussions of possible 

service extensions beyond official retirement dates that are currently on the books, carries 

a sensitivity that has hindered funding and advancement of ISHMS enabling 

technologies.  Such hypothetical assessments are discouraged for fear that they may 

produce results that would negate the case for recapitalizing the fleet with new aircraft.  

This sensitivity also limits the timeline for seeing a positive return on investment and 

makes it very difficult to produce a compelling business case.  

Recommendation 9:  As fiscal constraints continue to tighten, the support and 

operational communities should engage in a dialogue aimed at assessing the risk 

associated with basing current operational, support, and budget plans on a couple of key 

assumptions:  (a) Aircraft will actually be retired by the projected official expiration 
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dates, and (b) those jets will actually be replaced with enough new assets to fully execute 

the warfighting mission.  In addition to ascertaining the likelihood of one or both of these 

suppositions proving to be a false, a contingency plan must be agreed to that addresses 

how each functional community will deal with the predicament presented if either of 

these assumptions falls through.  In which case, the legacy fleet will likely continue to 

carry the majority of the warfighting mission well into the future, making the case for 

investing in SHM technology development and process improvement much stronger and 

maybe even an absolute necessity. 

6.6  Strategic Focus 

6.6.1  SHM & ISHMS Development.       

Currently, the USAF, and in particular the R&D and logistics communities within the 

AF (AFRL & ALCs, respectively), lacks a single focal point for SHM and the 

development of an ISHMS.  Although a number of individuals and/or individual offices 

in both communities are working to develop solutions (or at least pieces of a solution), no 

one with appropriate authority has the taken on/been assigned the responsibility of 

defining a single vision for what SHM should be…. As the old adage goes, “You’ll never 

get there if you don’t know where you’re going.”  This lack of vision and focused effort 

unfortunately seems to be a significant stumbling block for the development of a 

workable solution to SHM and implementation of an ISHMS. 

Recommendation 10:  A single focal point for SHM and the development of an 

ISHMS should be established.  This office/IPT should be comprised of an 
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interdisciplinary staff with representatives from the research, logistics, maintenance, 

operational, engineering, and acquisition communities.   The organization would be 

responsible for guiding enterprise research and developing the most cost-effective 

“integrated system approach” solution to achieving aircraft structural state awareness. 

6.6.2  Next Generation Maintenance & Support Systems Development. 

From a broader, enterprise-level perspective, to date the authors are unable to identify 

a clear focal point within the USAF (R&D and logistics communities) that is responsible 

for tracking and developing technologies aimed at advancing maintenance and support 

operations.  Sadly, it seems these extremely important and expensive mission areas are 

left to “fend for themselves” when it comes to improving the way the fleet is supported 

and maintained.  The maintenance, logistics, and support communities must remain 

dedicated to accomplishing the mission at hand which leaves little time and resources for 

pursuing new technologies.  As such, the Force, as an enterprise is failing to keep up with 

industry counterparts, as well as foreign entities, in equipping maintainers and support 

personnel with the latest, cutting-edge technologies available.  More importantly, because 

of this neglect the Force is missing out on potential opportunities to improve efficiency, 

reduce downtimes, and cut O&M costs.  Commercial airlines and manufacturers on 

contract to support them are taking on R&D efforts like those addressed by the Intelligent 

Maintenance Systems Center… Why isn’t the USAF doing the same?   

Recommendation 11:  If the USAF is serious about AFSO21 and “doing things 

smarter,” advancing the tools and equipment used to maintain and support the fleet must 
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be made a priority and resources allocated accordingly.  While industry is exploring 

cutting edge technologies to cut O&M bills in order to pad profit margins, AFSO21 

initiatives like CBM should be driving the enterprise to cut costs and free up dollars for 

fleet recapitalization.  Often in business it is said that “it takes money to make money.”  

Likewise, cutting life cycle costs often requires an up-front investment.  In this case, 

investing in the advancement of the software and hardware tools used to support and 

maintain the fleet may or may not result in reduced overall life cycle costs…  But how 

can anyone know for sure if no one is responsible for following these technologies and 

evaluating their potential for cost savings?  These important activities must be made the 

primary focus of an entity charged with researching and developing new and better 

support equipment and software tools.  The USAF can ill afford to leave to chance that 

those in the trenches will eventually find the time and resources to discover the 

technologies needed to remain the most dominant air power in the world.     
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Appendix A - SHM Value Model 
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Appendix B - C-130 SDVF's 

 

 

Figure 28 - C-130 Procurement SDVF 

 

 
 

Figure 29 - C-130 Development SDVF 
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Figure 30 - C-130 Training SDVF 

 

 

Figure 31 - C-130 Installation SDVF 
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Figure 32 - C-130 Operation SDVF 

 

 

Figure 33 - C-130 Probability of Detection SDVF 
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Figure 34 - C-130 Probability of False Detection SDVF 

 

 

Figure 35 - C-130 Reliability SDVF 
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Figure 36 - C-130 Aircraft Downtime SDVF 

 

 

Figure 37 - C-130 System Management & Maintenance SDVF 
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Figure 38 - C-130 Time to Field SDVF 
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Appendix C - C-130 Sensitivity Analysis 

 

Figure 39 - C-130 Sensitivity Analysis for Cost 

 

 

Figure 40 - C-130 Sensitivity Analysis for Performance 
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Figure 41 - C-130 Sensitivity Analysis for Logistics 
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Appendix D - A-10 SDVF’s 

 

 

Figure 42 - A-10 Procurement SDVF 

 

 

Figure 43 - A-10 Development SDVF 
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Figure 44 - A-10 Training SDVF 

 

 

Figure 45 - A-10 Installation SDVF 
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Figure 46 - A-10 Operation SDVF 

 

 

Figure 47 - A-10 Probability of Detection SDVF 
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Figure 48 - A-10 Probability of False Detection SDVF 

 

 

Figure 49 - A-10 Reliability SDVF 



 

98 

 

 

Figure 50 - A-10 Aircraft Downtime SDVF 

 

 

Figure 51 - A-10 System Management & Maintenance SDVF 
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Figure 52 - A-10 Time to Field SDVF 
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Appendix E - A-10 Sensitivity Analysis 

 

Figure 53 - A-10 Sensitivity Analysis for Cost 

 

 

Figure 54 - A-10 Sensitivity Analysis for Performance 
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Figure 55 - A-10 Sensitivity Analysis for Logistics 
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Appendix F - F-15 SDVF’s 

 

Figure 56 - F-15 Procurement SDVF 

 

 

Figure 57 - F-15 Development SDVF 
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Figure 58 - F-15 Training SDVF 

 

 

Figure 59 - F-15 Installation SDVF 
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Figure 60 - F-15 Operation SDVF 

 

 

Figure 61 - F-15 Probability of Detection SDVF 
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Figure 62 - F-15 Probability of False Detection SDVF 

 

 

Figure 63 - F-15 Reliability SDVF 
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Figure 64 - F-15 Aircraft Downtime 

 

 

Figure 65 - F-15 Management & Maintenance SDVF 
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Figure 66 - F-15 Time to Field SDVF 

  



 

108 

 

Appendix G - F-15 Sensitivity Analysis 

 

Figure 67 - F-15 Sensitivity Analysis for Cost 

 

 

Figure 68 - F-15 Sensitivity Analysis for Performance 
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Figure 69 - F-15 Sensitivity Analysis for Logistics 
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